Radioactive isotope:

Also called radioisotope, radionuclide, or radioactive nuclide, any of several species of the same chemical element with different masses whose nuclei are unstable and dissipate excess energy by spontaneously emitting radiation in the form of alpha, beta, and gamma rays.

Every chemical element has one or more radioactive isotopes. For example, hydrogen, the lightest element, has three isotopes with mass numbers 1, 2, and 3. Only hydrogen-3 (tritium), however, is a radioactive isotope, the other two being stable. More than 1,000 radioactive isotopes of the various elements are known. Approximately 50 of these are found in nature; the rest are produced artificially as the direct products of nuclear reactions or indirectly as the radioactive descendants of these products.

Applications of radioisotpes:

- Radioactive isotopes have a variety of applications. Generally, however, they are useful either because we can detect their radioactivity or we can use the energy they release.
- In medicine:
- Radioactive isotopes have numerous medical applications diagnosing and treating illnesses and diseases for example, cobalt-60 is extensively employed as a radiation source to arrest the development of cancer. Other radioactive isotopes are used as tracers (A tracer is a substance that can be used to follow the pathway of that substance through some structure) for diagnostic purposes as well as in research on metabolic processes.

النظير المشع:

يُسمى أيضًا بالنظائر المشعة ، أو النويدات المشعة ، أو النويدات المشعة ، أي نوع من عدة أنواع من نفس العنصر الكيميائي مع كتل مختلفة تكون نواتها غير مستقرة وتبدد الطاقة الزائدة عن طريق إصدار إشعاع تلقائي على شكل أشعة ألفا وبيتا و غاما.

يحتوي كل عنصر كيميائي على واحد أو أكثر من النظائر المشعة. على سبيل المثال ، الهيدروجين ، أخف عنصر ، له ثلاثة نظائر بأرقام كتلتها 1 و 2 و 3. ومع ذلك ، فإن الهيدروجين 3 (التريتيوم) فقط هو نظير مشع ، والاثنان الآخران مستقران. أكثر من 1000 نظير مشع للعناصر المختلفة معروفة. تم العثور على ما يقرب من 50 من هؤلاء في الطبيعة ؛ يتم إنتاج الباقي بشكل مصطنع كمنتجات مباشرة للتفاعلات النووية أو بشكل غير مباشر كأسلاف مشعة لهذه المنتجات.

تطبيقات النظائر المشعة:

• للنظائر المشعة مجموعة متنوعة من التطبيقات. ومع ذلك ، فهي مفيدة بشكل عام إما لأنه يمكننا اكتشاف نشاطها الإشعاعي أو يمكننا استخدام الطاقة التي تطلقها.

• في الطب:

• للنظائر المشعة العديد من التطبيقات الطبية لتشخيص و علاج الأمراض و الأمراض ، على سبيل المثال ، يستخدم الكوبالت 60 على نطاق واسع كمصدر إشعاع لوقف تطور السرطان. تُستخدم النظائر المشعة الأخرى كمقتفعات (الكاشف هو مادة يمكن استخدامها لتتبع مسار تلك المادة من خلال بعض الهياكل) لأغراض التشخيص وكذلك في البحث عن عمليات التمثيل الغذائي.

- When a radioactive isotope is added in small amounts to comparatively large quantities of the stable element, it behaves exactly the same as the ordinary isotope chemically; it can, however, be traced with a Geiger counter or other detection device.
- One example of a diagnostic application is using radioactive iodine-131 to test for thyroid activity. The thyroid gland in the neck is one of the few places in the body with a significant concentration of iodine. To evaluate thyroid activity, a measured dose of iodine-131 is administered to a patient, and the next day a scanner is used to measure the amount of radioactivity in the thyroid gland. The amount of radioactive iodine that collects there is directly related to the activity of the thyroid, allowing trained physicians to diagnose both hyperthyroidism and hypothyroidism. Iodine-131 has a half-life of only 8 d, so the potential for damage due to exposure is minimal. Technetium-99 can also be used to test thyroid function. Bones, the heart, the brain, the liver, the lungs, and many other organs can be imaged in similar ways by using the appropriate radioactive isotope.
- Another medically important radioactive isotope is carbon-14, which is used in a breath test to detect the ulcer-causing bacteria Heliobacter pylori.

Very little radioactive material is needed in these diagnostic techniques because the radiation emitted is so easy to detect. However, therapeutic applications usually require much larger doses because their purpose is to preferentially kill diseased tissues. For example, if a thyroid tumor is detected, a much larger infusion (thousands of rem, as opposed to a diagnostic dose of less than 40 rem) of iodine- 131 could help destroy the tumor cells. Similarly, radioactive strontium is used to not only detect but also ease the pain of bone cancers.

عندما يُضاف نظير مشع بكميات صغيرة إلى كميات كبيرة نسبيًا من العنصر المستقر، فإنه يتصرف تمامًا مثل النظير العادي كيميائيًا ؛ ومع ذلك، يمكن . تتبعه باستخدام عداد جيجر أو أي جهاز كشف آخر

أحد الأمثلة على التطبيقات التشخيصية هو استخدام اليود 131 المشع لاختبار نشاط الغدة الدرقية. تعتبر الغدة الدرقية الموجودة في الرقبة من الأماكن القليلة في الجسم التي تحتوي على نسبة عالية من اليود. لتقييم نشاط الغدة الدرقية ، يتم إعطاء جرعة مُقاسة من اليود 131 للمريض ، وفي اليوم التالي يتم استخدام ماسح ضوئي لقياس كمية النشاط الإشعاعي في الغدة الدرقية. كمية اليود المشع التي يتم جمعها هناك ترتبط ارتباطًا مباشرًا بنشاط الغدة الدرقية وقصور مما يسمح للأطباء المدربين بتشخيص كل من فرط نشاط الغدة الدرقية وقصور الغدة الدرقية. يبلغ عمر النصف لليود 131 8 أيام فقط ، لذا فإن احتمال حدوث ضرر بسبب التعرض ضئيل للغاية. يمكن أيضًا استخدام لاختبار وظيفة الغدة الدرقية. يمكن تصوير العظام والقلب 79-Technetium

نظير مشع آخر مهم طبيا هو الكربون 14 ، والذي يستخدم في اختبار • . التنفس للكشف عن البكتيريا المسببة للقرحة هيليوباكتر بيلوري

هناك حاجة إلى القليل جدًا من المواد المشعة في تقنيات التشخيص هذه لأن الإشعاع المنبعث من السهل جدًا اكتشافه. ومع ذلك ، تتطلب التطبيقات العلاجية عادة جرعات أكبر بكثير لأن الغرض منها هو تفضيل قتل الأنسجة المريضة. على سبيل المثال ، إذا تم الكشف عن ورم في الغدة الدرقية ، فإن ضخ أكبر بكثير (آلاف الريم ، على عكس جرعة التشخيص أقل من 40 ريم) من اليود- 131 يمكن أن يساعد في تدمير الخلايا السرطانية. وبالمثل ، لا يتم استخدام السترونتيوم المشع لاكتشاف سرطانات العظام فحسب ، بل لتخفيف . آلامها أيضًا

Table 11.5 Some Radioactive Isotopes That Have Medical Applications

Isotope	Use
32 P	cancer detection and treatment, especially in eyes and skin
5ºFe	anemia diagnosis
‰Co	gamma ray irradiation of tumors
‱ Тс	brain, thyroid, liver, bone marrow, lung, heart, and intestinal scanning; blood volume determination
124	diagnosis and treatment of thyroid function
¹³³Xe	lung imaging
198Au	liver disease diagnosis

In addition to the direct application of radioactive isotopes to diseased tissue, the gamma ray emissions of some isotopes can be directed toward the tissue to be destroyed. Cobalt-60 is a useful isotope for this kind of procedure.

Food reservation by radiation:

The radiation emitted by some radioactive substances can be used to kill microorganisms on a variety of foodstuffs, which extends the shelf life of these products. Produce such as tomatoes, mushrooms, sprouts, and berries are irradiated with the emissions from cobalt-60 or cesium-137. This exposure kills a lot of the bacteria that cause spoilage, so the produce stays fresh longer. Eggs and some meat, such as beef, pork, and poultry, can also be irradiated. Contrary to the belief of some people, irradiation of food does not make the food itself radioactive.

	الجدول 11.5 بعض النظائر المشعة التي لها تطبيقات طبية
النظائر	ستخدم
	الكشف عن السرطان وعلاجه وخاصة في العين والجلد
Fe"	تشخيص فقر الدم
شارك "	تشعيع الأورام بأشعة جاما
یم تک	مسح الدماغ والغدة الدرقية والكبد ونخاع العظام والرئة والقلب والأمعاء. تشخيص تحديد حجم
"أنا	الدم وعلاج وظائف الغدة الدرقية
'''Xe	تصوير الرئة
108 Au	تشخيص أمراض الكبد

بالإضافة إلى التطبيق المباشر للنظائر المشعة على الأنسجة المريضة ، يمكن توجيه انبعاثات أشعة جاما لبعض النظائر نحو الأنسجة المراد تدميرها. يعتبر الكوبالت 60 نظيرًا مفيدًا لهذا النوع من الإجراءات

حجز الطعام عن طريق الإشعاع

يمكن استخدام الإشعاع المنبعث من بعض المواد المشعة لقتل الكائنات الحية الدقيقة الموجودة على مجموعة متنوعة من المواد الغذائية ، مما يطيل العمر الافتراضي لهذه المنتجات. يتم تعريض المنتجات مثل الطماطم والفطر والبراعم والتوت للإشعاع بانبعاثات الكوبالت 60 أو السيزيوم 137. هذا التعرض يقتل الكثير من البكتيريا المسببة للتلف ، لذلك يبقى المنتج طازجًا لفترة أطول. يمكن أيضًا تعريض البيض وبعض اللحوم ، مثل لحم البقر ولحم الخنزير والدواجن للإشعاع. خلافًا لاعتقاد بعض الناس ، فإن تعريض الطعام المناع لا يجعل الطعام نفسه مشعًا